#мир_знаний
Когда-то Шпенглер писал о закате Европы, а Морис Клайн написал о закате математики. Всё дело в том, что раньше математическая наука была незыблема. Она не терпела различных толкований, она чётко и ясно объясняла законы природы. Сегодня «Предмет математического исследования — условность, не имеющая опоры в реальности». Так существуют различные геометрии: в евклидовой параллельные прямые не пересекаются, а в геометрии Лобачевского эта аксиома отрицается. Точно также некоторые математические формулы могут давать совершенно разный результат в зависимости от того, какой математикой пользоваться.
Книга очень интересная. Она состоит из истории математики, философских рассуждений на тему этой науки и собственно некоторых теорий, которые претерпели изменения и вокруг которых когда-то велись ожесточённые споры. Автор задаётся вопросом, что же такое математика — отражение мира или игра ума, не имеющая к окружающему миру никакого отношения.
Читается книга легко за исключением тех мест, где есть формулы (в которые я не вникала). Хорошо бы ещё иметь хотя бы поверхностные представления о рассказываемых теориях, иначе не совсем понятно, в чём суть того или иного спора. Автор несколько предвзят к теретической, «чистой» математике в отличии от прикладной. Всё-таки мне кажется, что без одной не было бы другой.
О разных математических школах я услышала впервые, также как и о том, что математика вовсе не однозначная наука. Кажется, в школе об этом не рассказывали.
Принято)